Pulsar Natuurkunde 3e ed
- Hoofdstuk 4 - Meten en regelen
oefentoetsen & antwoorden
3e editie
4e jaar |
Havo
Deze toets behandelt o.m. de volgende onderwerpen: systemen, sensoren, signalen en verwerkers/actuatoren
Domein G2: technische automatisering
Wanneer er gevraagd wordt om iets uit te rekenen, doe dat dan altijd op de volgende stapsgewijze manier:
Gegeven (wat zijn de gegevens? Noteer deze)
Gevraagd
Formule(s)
Berekening (noteer ook je tussenstappen!)
Conclusie (en controleer of je echt het antwoord op de vraag hebt gegeven, inclusief eenheid)
Het is belangrijk om op deze manier te werken om de vraag volledig te beantwoorden en op je toets alle punten te scoren.
Toets Natuurkunde
Pulsar Natuurkunde 3e ed
Online maken
Toets afdrukken
a) Een regelsysteem controleert een grootheid (een waarde) en probeert deze waarde constant te houden. Hiervoor is een terugkoppeling nog. Deze terugkoppeling controleert of aan die, ingestelde waarde, wordt voldaan. Zo niet dan zal het systeem in actie komen en iets doen om de waarde weer “normaal” te krijgen.b) De drie blokken van een blokschema zijn: waarnemen, verwerken en uitvoeren. Maar soms worden ze ook invoer, doorvoer, uitvoer genoemd, of sensor, verwerker en actuator. Die laatste geeft eigenlijk meer aan welk soort apparaat gebruikt wordt.c) Een ijkgrafiek toont de eigenschappen van een sensor. Aan de hand van het ijkgrafiek kun je bepalen wat de relatie is tussen twee grootheden, bijvoorbeeld temperatuur en spanning of lichtsterkte en spanning. Bij technische automatisering gaat het altijd om een spanning versus een andere te meten grootheid.d) Met het bereik van een sensor wordt bedoeld de waardes van een grootheid waarbinnen de sensor kan werken (en dus een signaal afgeeft). Bijvoorbeeld het bereik van de temperatuursensor kan zijn tussen de 0 oC en 40 oC. Buiten die waardes zou die specifieke sensor geen signaal afgeven en dus niet bruikbaar zijn in een systeem.e) Een discreet signaal kenmerkt zich door maar twee waardes (vaak een 0 en een 1 genoemd). Die twee waardes zijn een hoog signaal (de 1) en een laag signaal (de 0).f) De vier verwerkers zijn de EN-poort (AND) en OF-poort (OR) en de invertor en de geheugencel. Er bestaan nog veel meer logische poorten….De EN-poort controleert of op BEIDE ingangen een hoog signaal binnenkomt. Is dat het geval dan zal de uitkomst ook een hoog signaal zijn. Anders blijft die poort een laag signaal geven.De OF-poort controleert of er minstens bij één ingang een hoog signaal binnenkomt. In dat geval zal de uitkomst ook een hoog signaal zijn. Dus bij de OF-poort komt er alleen aan laag signaal als BEIDE ingangen ook laag zijn.De invertor verandert het digitale signaal. Als er een ‘0’ binnenkomt wordt de uitvoer een ‘1’ (en andersom)De geheugencel slaat een waarde op en kan later worden opgehaald en gebruikt. Bijvoorbeeld als er iets gebeurt kun je dat vastleggen met een “1”, zolang de geheugencel niet gewist blijft zal deze altijd een “1” als uitvoer geven.g) Een actuator is een duur woord voor werkend apparaat dat door een automatisch systeem wordt in- of uitgeschakeld. Denk daarbij aan een motor, een kachel of een lamp. Een speciale actuator is het relais. Het relais is een schakelaar die automatisch wordt in en uitgeschakeld door het systeem. a) Een regelsysteem onderneemt actie als er tijdens een proces een verandering optreedt die afwijkt van een vooringestelde waarde van een grootheid. Het systeem onderneemt dan zelf actie.b) Een stuursysteem onderneemt actie als er iets verandert (sirene, waarschuwingslampje etc.). Een regelsysteem zorgt ervoor dat een waarde vast wordt gehouden terwijl een stuursysteem alleen iets signaleert waarop iemand of iets anders actie moet ondernemen. Denk hierbij aan een alarm dat afgaat als het schip afwijkt van de koers. In de theorie is het grootste verschil de terugkoppeling in het systeem. Een stuursysteem heeft deze niet en een regelsysteem wel. c) Het display geeft alleen maar aan wat de waarde van een grootheid is. In het scherm zie je dat de koers momenteel 221 graden is. Er gebeurt verder helemaal niets met deze informatie. De drie blokken van een meetsysteem zijn waarneming (uitlezen van de gps), verwerking (vergelijken met de gps-stand van een moment terug en dan berekenen van de koers) en uitslag (de weergave op het display in begrijpelijke taal). a) De gevoeligheid van een sensor kan worden bepaald door middel van een ijkgrafiek. Je met diverse waardes van de sensor en zet deze in een diagram uit tegen de grootheid die de sensor beïnvloedt. De toename van de output van de sensor deel je door de toename van de grootheid die de sensor meet, het getal dat je daarmee verkrijgt is gevoeligheid. Bijvoorbeeld je meet met een LDR een toename van 1500 Ω. De toename van de lichtsterkte is 10.000 cd (candela). De gevoeligheid is dan $\frac{\Delta sensor}{\Delta grootheid} = \frac{\Delta Omega }{\Delta cd} = \frac{1500}{10 000} = 0,15 \frac{\Omega}{cd} = 0,15 \ \Omega cd^{-1}$ b) Een digitaal signaal bestaat uit alleen twee waardes, vaak hoog en laag of 0 en 1, terwijl een analoog signaal een continu signaal geeft met toename van geleidelijke waardes.c) Een binair systeem is gebaseerd op een getal bestaande uit alleen twee (binair) getallen: de 0 en de 1. Terwijl een decimaal systeem gebaseerd is op 10 getallen (van 0 naar 9). Het grondgetal van een binair systeem is “2” en dat van een decimaal getal “10” is.d) Het systeem kent 6 stappen, dus de gemeten waardes wil je in die zes stappen verdelen. Als je meetbereik van 0 naar 10 Volt gaat is dat een meetbereik van 10 Volt. Dus de stapgrootte is dan je meetbereik gedeeld door het aantal stappen: $Stapgrootte = \frac{meetbereik}{aantal \ stappen} = \frac{10}{6} = 1,667$. a) De pulsteller staat op 1 Hz. De Herz is de eenheid voor frequentie (zie binas tabel 4) en geeft aan hoe vaak iets per seconde voorkomt. Bij een frequentie van 1 Hz geeft de pulsteller 1 puls af per seconde. Dus als je 12 pulsen hebt gehad ben je 12 seconde verder.b) Het binaire systeem bestaat uit 1 en 0. De plek van de 1 en de 0 kun je dan gebruiken om het om te zetten naar decimaal. Omgekeerd moet je het om te zetten decimale getal eerst opdelen in de decimale “grondgetallen”. Deze grond getallen zijn 1, 2, 4, 8, 16 enzovoort.Het decimale getal “12” bestaat uit de grondgetallen “4” en “8” (immers 4+8=12)Het decimale getal “4” staat op de derde positie (immers “1” staat op 1 en “2” staat op 2 en daarna komt “4”.Dus het decimale getal “4” is 1 0 0. (Bij het binaire getal tel je de positie van achter naar voren.)Het decimale getal “8” staat op de vierde positie, dus: 1 0 0 0Het decimale getal “12” is “4” plus “8” en is in het binaire systeem “100” plus “1000”. En net als bij gewoon rekenen mag je deze bij elkaar op tellen, dus:100 + 1000 = 1100Het antwoord “12” is dus 1 1 0 0 c) Dit is een voorbeeld van een stuursysteem. Het systeem houdt bij hoeveel seconden er voorbij zijn en geeft bij een bepaalde waarde (in ons voorbeeld “12”) een signaal (alarm) af.d) De sensor in dit systeem is de drukknop. Want als deze niet wordt ingedrukt blijft het alarm afgaan. Je zou ook kunnen redeneren dat de pulsteller als sensor kan dienen. Maar dan moet je toelichten dat het dan gaat om de positie “4” en “8” op je systeembord. Immers als die twee beide aan staan (hoog signaal afgeven) moet er een alarm afgaan.e) In antwoord b heb je aangegeven dat bij “4” en “8” je de 12 seconden hebt bereikt. Dus op de teller zie je dat er dan een hoog signaal wordt afgegeven. Je alarm moet afgaan op het moment dat zowel “4” EN “8” hoog zijn. Je leest dat er staat “EN” dus dan weet je al dat je de logische poort EN moet gebruiken.f) In de bovenste antwoorden heb je al veel van de stappen die nodig zijn kunnen lezen. Stapsgewijs wordt hieronder aangegeven hoe je dan het systeembord moet opbouwen met de juiste verbindingen.1. Het proces moet gestart worden en dat start je door de teller te laten tellen, dus leg je een verbinding tussen de pulsteller en de teller. Je wilt namelijk dat per seconde er één puls wordt afgegeven. 2. De teller gaat nu tellen en je zult op het display zien dat de teller oploopt, maar je ziet ook het binaire getal toe nemen. Als “4” en “8” beiden hoog zijn moet het signaal afgaan. Dus leg je twee verbindingen naar de “EN” poort.3. Zodra het resultaat van de “EN” poort hoog is, moet het alarm afgaan. Maar om er voor te zorgen dat het alarm BLIJFT afgaan zul je een geheugencel moeten activeren. Immers als na een seconde de teller verder gaat zal de “EN” poort niet meer hoog zijn.4. Vanaf de geheugencel kun je nu de actuator (het alarm) activeren.5. Het alarm gaat nu af. De teller blijft door tellen. Dus een druk op de knop moet alles weer resetten. Dat betekent dat je met één knop beide moet resetten, dus zowel de teller als de geheugencel.Je systeem is nu gemaakt. Na elke 12 seconden gaat het alarm af totdat je het gereset hebt waarbij dan alles weer wordt herhaald. a) Lampje 1 (fig. 3) gaat alleen maar aan en uit. Dit is een voorbeeld van een digitaal signaal (zelfs binair). De wijzerplaat met naald (fig. 4) beweegt geleidelijk over de meter, de meting is continue en daarmee analoog. De serie lampjes (fig. 5) gaan uit en aan afhankelijk van het niveau van de olie in de tank. Het gaat in stapjes en is dus digitaal. Het juiste antwoord is dus de wijzerplaat, figuur 4.b) In het ijkgrafiek is te zien dat de lijn eerst snel oploopt om vervolgens lineair te groeien. Daarna loopt de lijn nagenoeg horizontaal. Bij 1000,0 mPa start het lineaire verband. Dit gaat door tot ongeveer 1000,8 mPa. Tussen die twee waardes is er een recht-evenredig verband en dus geeft dat het lineair meetbereik aan.Toevoeging er wordt hier gekozen voor een lineair verband omdat als de tank bijna leeg is de sensor niet goed werkt en snel afneemt. Ook als de tank vol zit en er wordt nog iets bij gedaan dan is de sensor kennelijk niet in staat om de toename evenredig om te zetten in spanning.c) Bij de gevoeligheid bereken je hoeveel (in dit geval) millivolt je meet per toename van 1 Mill pascal. De gevoeligheid wordt normaal berekend met ΔyΔx\frac{\Delta y}{\Delta x}ΔxΔy. De Δy\Delta y Δy is een toename van de millivolts en de Δx\Delta x Δx duidt op een toename van het aantal Mill pascal. In het meetbereik staat de spanning op de y-as en de druk op de x-as. Dus dan wordt het ΔUΔP\frac{\Delta U}{\Delta P}ΔPΔU Bepaal eerste de spanning bij de lage drukwaarde: P = 1000 mPa-> U = 20,5 mV, dit doe je met behulp van de grafiek.Bepaal vervolgens de spanning bij de hoge drukwaarde: P = 1000,8 mPa -> U = 24,5 mVBereken de ΔP\Delta P ΔP en de ΔU\Delta U ΔU (Δ\Delta Δ, of delta, staat voor de toename en is het verschil tussen een hoge en lage waarde): ΔP = 1000,8 – 1000 = 0,8 mPaΔ\Delta ΔU = 24,5 – 20,5 = 4,0 mVBereken de gevoeligheid:Gegeven: ΔP\Delta P ΔP = 0,8 mPa; ΔU\Delta U ΔU = 4,0 mVGevraagd: de gevoeligheidFormule: gevoeligheid=ΔUΔPgevoeligheid = \frac{\Delta U}{\Delta P}gevoeligheid=ΔPΔU Berekening: gevoeligheid= ΔUΔP=0,84=0,2mVmPa=0,2mVmPa−1gevoeligheid = \frac{\Delta U}{\Delta P} = \frac{0,8}{4} = 0,2 \frac{mV}{mPa} = 0,2 mV mPa^{-1}gevoeligheid= ΔPΔU=40,8=0,2 mPamV=0,2mVmPa−1 Conclusie: de gevoeligheid is 0,2mVmPa−10,2 mV mPa^{-1}0,2mVmPa−1 of 0,2mV/mPa0,2 mV / mPa 0,2mV/mPad) Een comparator vergelijkt een analoog signaal met een drempelwaarde. Als deze drempelwaarde wordt bereikt moet het lampje gaan branden. In dit geval zal het lampje moeten gaan branden als de druk onder de 1000 mPa komt. Je hebt geleerd dat bij een comparator een hoog signaal moet worden gegeven als een waarde boven de drempelwaarde uitkomt. In dit voorbeeld mag de waarde niet ONDER die drempel komen. De drempelwaarde is overigens 1000 mPa, want in de tekst staat aangegeven dat dan bijna de tank leeg is.Omdat de comparator een signaal geeft dat BOVEN een drempelwaarde uitkomt moet je het uitgangssignaal omdraaien. En daarvoor het je een invertor nodig. Die van een hoog signaal een laag signaal maakt (lampje uit) en van een laag signaal een hoog signaal maakt (lampje brandt).e) Er zijn vijf lampjes. Als alle vijf branden is de tank vol. Brandt er geen lampje dan is de tank leeg. Uit het ijk-diagram lezen we dat het meetbereik loopt van 20,5 tot 24,5 mVolt. Bij vijf lampjes gaan we uit van zes stapjes (vijf branden plus 1 alles uit, maakt 6 stapjes).Het verschil in spanning bedraagt 4 mVoltWe kunnen nu de stapgrootte berekenen: 46=106=0,667 mV\frac{4}{6} = \frac{10}{6} = 0,667 \ mV64=610=0,667 mV. Dus bij elke 0,667 mV moet er een lampje aangaan:Bij 20,5 alle lampjes uitBij 21,167 onderste lampje aanBij 21,833 tweede lampje aanEnzovoorts
Deze toets bestellen?
Voordeligst
Lidmaatschap ToetsMij
€ 12,99/mnd
Snel nog even wat toetsen oefenen? Kies dan onze meest flexibele optie.